Time Series Data Mining Methods: A Review

نویسنده

  • Wolfgang Karl Härdle
چکیده

Today, real world time series data sets can take a size up to a trillion observations and even more. Data miners’ task is it to detect new information that is hidden in this massive amount of data. While well known techniques for data mining in cross sections have been developed, time series data mining methods are not as sophisticated and established yet. Large time series bring along problems like very high dimensionality and up to today, researchers haven’t agreed on best practices in this regard. This review gives an overview of the challenges of large time series and the proposed problem solving approaches from time series data mining community. We illustrate the most important techniques with Google trends data. Moreover, we review current research directions and point out open research questions. Heutzutage sind die Möglichkeiten der Datensammlung und -Speicherung unvorstellbar weitreichend und somit können Zeitreihendatensätze mittlerweile bis zu einer Billion Beobachtungen enthalten. Die Aufgabe von Data Mining ist es, versteckte Informationen aus dieser Datenschwemme herauszufiltern. Während es für Querschnittsdaten viele verschiedene und sehr gut entwickelte Techniken gibt, hinken die Zeitreihen Data Mining Methoden weit hinterher. Die Forschungspraxis hat sich in diesem Bereich noch nicht auf standardisierte Vorgehensweisen geeinigt. Dieser Literaturüberblick stellt zunächst die typischen Probleme, die Zeitreihen mit sich bringen, dar und systematisiert daraufhin die von der Forschungsgemeinde vorgeschlagenen Lösungsansätze hierfür. Die wichtigsten Ansätze werden anhand von Google Trends Daten illustriert. Darüber hinaus werfen wir einen Blick auf aktuelle Forschungsströme und zeigen noch offene Forschungsfragen auf.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Forecasting Gold Price using Data Mining Techniques by Considering New Factors

Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Modeling and prediction of time-series of monthly copper prices

One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...

متن کامل

Time Series Data Mining: Identifying Temporal Patterns for Characterization and Prediction of Time Series Events

A new framework for analyzing time series data called Time Series Data Mining (TSDM) is introduced. This framework adapts and innovates data mining concepts to analyzing time series data. In particular, it creates a set of methods that reveal hidden temporal patterns that are characteristic and predictive of time series events. Traditional time series analysis methods are limited by the require...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015